Internship Available

Research group

Daily supervisor
Philip Nijland

Contact
p.nijland@vumc.nl

Title project
Astrocytic PGC-1alpha increases mitochondrial antioxidant capacity and suppresses inflammation: Implications for multiple sclerosis

Research aim
Gain more insight in the functional role of PGC-1alpha expression in astrocytes in active MS lesions

Short content
Multiple sclerosis (MS) is generally characterised as an auto-immune-mediated disease in which infiltrating macrophages and T-lymphocytes provoke focal demyelination in the brain and spinal cord. The last decade emerging evidence has pointed towards a key role of reactive oxygen species (ROS) in MS pathology. We observed a marked upregulation of PGC-1α in astrocytes in MS lesions. PGC-1α is a transcriptional co-regulator which is involved in the transcription of a broad set of genes, most of which are involved in energy metabolism but also include antioxidant and inflammatory genes. Therefore we want to investigate the role of PGC-1α in ROS scavenging and the inflammatory profile of human astrocytes.

Techniques and methods
Cell culture of primary human astrocytes, lentiviral overexpression of PGC-1α, RNA isolation and qPCR, ELISA, immunohistochemistry, immunocytochemistry. Mitochondrial assays cell cultures, western blot.

Literature:
2 papers
- Mitochondrial dysfunction contributes to neurodegeneration in multiple sclerosis.
 2014.
- Reduced expression of PGC-1α partly underlies mitochondrial changes and correlates with neuronal loss in multiple sclerosis cortex.
 2013.

INTERESTED?
Send a message to p.nijland@vumc.nl, including your motivation and CV.

General questions:
stages.mcbi@vumc.nl.